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L(W) = E¢ f(W,§)

c=(XYy)~D
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PERFORMANCE
R(W) =E )~ L(W; (z,y))
ZL B )

The one true theorem

R(W)=Rs(W)+R(W)—-Rs(W)
N P H/_/

Train error As(W):=Test error
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Simple idea: Enforce “high” quality






HOW TO HAVE YOUR CAKE
AND EAT IT (TOOY?



HOW TO HAVE YOUR CAKE
AND EAT IT (TOOY?

Ingredients



HOW TO HAVE YOUR CAKE
AND EAT IT (TOOY?

Ingredients

|, High quality: constraints with nice theoretical
properties



HOW TO HAVE YOUR CAKE
AND EAT IT (TOOY?

Ingredients

|, High quality: constraints with nice theoretical
properties

2. A'fast” algorithm: Projection free
approaches are more parsimonious



HOW TO HAVE YOUR CAKE
AND EAT IT (TOOY?

Ingredients

|, High quality: constraints with nice theoretical
properties

2. A'fast” algorithm: Projection free
approaches are more parsimonious

3. Resources: GPUs, fellow graduate students,
adviser etc.
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® Enforcing various generic constraints:
R(W)<A
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WHY!

Pareto Front

Non-optimal Points

Pareto Optimal Points

R(W)
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PESKY GENERIC CONSTRAINTS
I WllTv

[Wir,

Lemma: An ¢ — approximate CG step can be computed in O (1/¢) time
(independent of dimensions).



PATH CG



W7 =

PATH CG

b

vin[i]gvle_%"'vout[j] k=1




PATH CG
= D> e

vin[i]e_l)‘}le_%"'vout[j] k=1

e Why path norm” Rescale invariance



PATH CG
= D> e

vin[i]e_l)‘}le_%"'vout[j] k=1

e Why path norm” Rescale invariance



PATH CG
= D> e

vin[i]e_l)‘}le_%"'vout[j] k=1

e Why path norm” Rescale invariance

e Projection at least NP Hard



PATH CG
= D> e

vin[i]e_l)‘}le_%"'vout[j] k=1

e Why path norm” Rescale invariance

e Projection at least NP Hard



PATH CG
- ) e

vin[i]e_l)‘}le_%"'vout[j] k=1

e \Why path norm? Rescale invariance
e Projection at least NP Hard

e Subproblems in CG can be solved in O(BI)
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