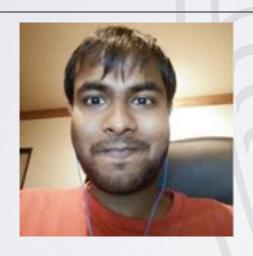
AAAI' 19

EXPLICITLY IMPOSING CONSTRAINTS IN DEEP NETWORKS VIA CONDITIONAL GRADIENTS GIVES IMPROVED GENERALIZATION AND FASTER CONVERGENCE



Sathya Ravi, Tuan Dinh, Vishnu Lokhande, Vikas Singh Department of Computer Sciences University of Wisconsin–Madison

11/14/2018

DEEP LEARNING

DEEP LEARNING

Solve

$$\min_{W \in \mathbb{R}^n} L(W)$$

DEEP LEARNING

Solve

$$\min_{W \in \mathbb{R}^n} L(W)$$

$$L(W) = \mathbb{E}_{\xi} f(W, \xi)$$

$$\xi = (x,y) \sim \mathcal{D}$$

Compute an estimate of gradient

Compute an estimate of gradient

$$W_{t+1} = W_t - \eta_t \nabla \tilde{L}_t(W_t)$$

Compute an estimate of gradient

$$W_{t+1} = W_t - \eta_t \nabla \tilde{L}_t(W_t)$$

$$\mathbb{E}\left[\nabla \tilde{L}_t(W_t)\right] = \nabla L(W_t)$$

$$\mathbb{E}\left[\left\|\nabla \tilde{L}_t(W) - \nabla L(W)\right\|^2\right] \le \sigma^2$$

Compute an estimate of gradient

$$W_{t+1} = W_t - \eta_t \nabla \tilde{L}_t(W_t)$$
What about
$$\mathbb{E} \left[\nabla \tilde{L}_t(W_t) \right] = \nabla L(W_t)$$

$$\mathbb{E} \left[\left\| \nabla \tilde{L}_t(W) - \nabla L(W) \right\|^2 \right] \leq \sigma^2$$

$$\mathcal{R}(W) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(W;(x,y))$$

$$\mathcal{R}(W) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(W;(x,y))$$

$$\mathcal{R}_S(W) = \frac{1}{n} \sum_{i=1}^n L(W; (x_i, y_i))$$

$$\mathcal{R}(W) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(W;(x,y))$$

$$\mathcal{R}_S(W) = \frac{1}{n} \sum_{i=1}^n L(W; (x_i, y_i))$$

The one true theorem

$$\mathcal{R}(W) = \mathcal{R}_S(W) + \mathcal{R}(W) - \mathcal{R}_S(W)$$

$$\mathcal{R}(W) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(W;(x,y))$$

$$\mathcal{R}_S(W) = \frac{1}{n} \sum_{i=1}^n L(W; (x_i, y_i))$$

The one true theorem

$$\mathcal{R}(W) = \mathcal{R}_S(W) + \mathcal{R}(W) - \mathcal{R}_S(W)$$

Train error $\Delta_{S}(W)$:=**Test error**

Classical

 $\Delta_S(W) \propto \# \text{parameters}$

Classical

Modern (refined)

 $\Delta_S(W) \propto \# \text{parameters}$

$$\Delta_S(W) \propto ||W||$$

Classical

Modern (refined)

 $\Delta_S(W) \propto \# \text{parameters}$

 $\Delta_S(W) \propto ||W||$

Simple idea: Enforce "high" quality

Ingredients

Ingredients

I. High quality: constraints with nice theoretical properties

Ingredients

- I. High quality: constraints with nice theoretical properties
- 2. A "fast" algorithm: Projection free approaches are more parsimonious

Ingredients

- I. High quality: constraints with nice theoretical properties
- 2. A "fast" algorithm: Projection free approaches are more parsimonious
- 3. Resources: GPUs, fellow graduate students, adviser etc.

Enforcing various generic constraints:
 R(W)≤λ

Enforcing various generic constraints:
 R(W)≤λ

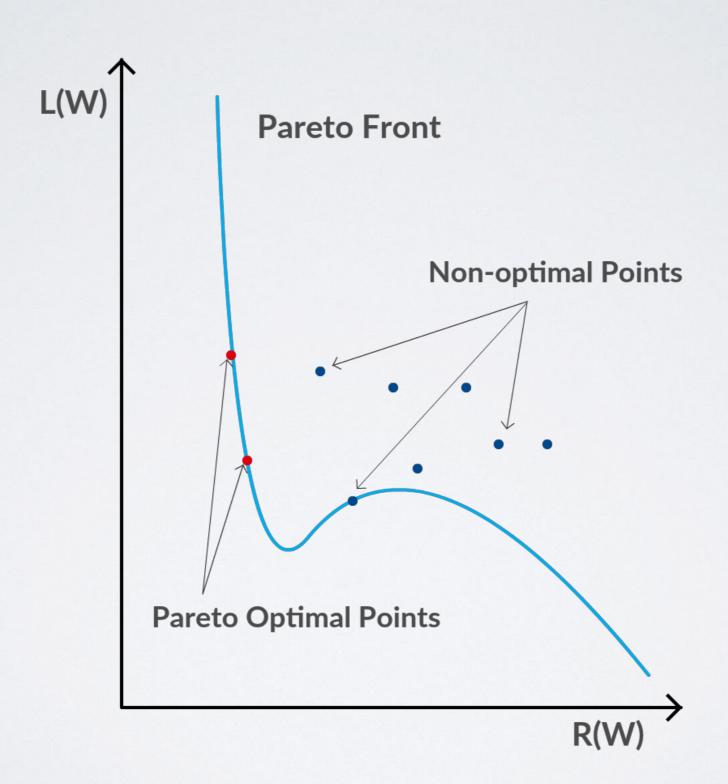
Enforcing path norm constraint

Enforcing various generic constraints:
 R(W)≤λ

Enforcing path norm constraint

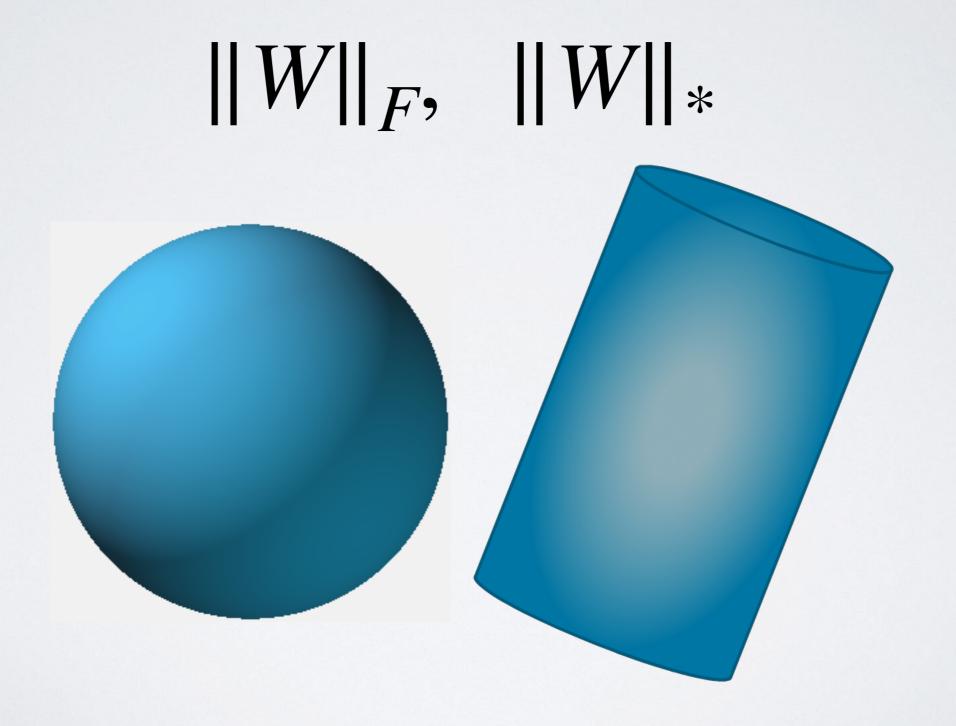
 Experiments with three different tasks and datasets





EXCELLENT GENERIC CONSTRAINTS

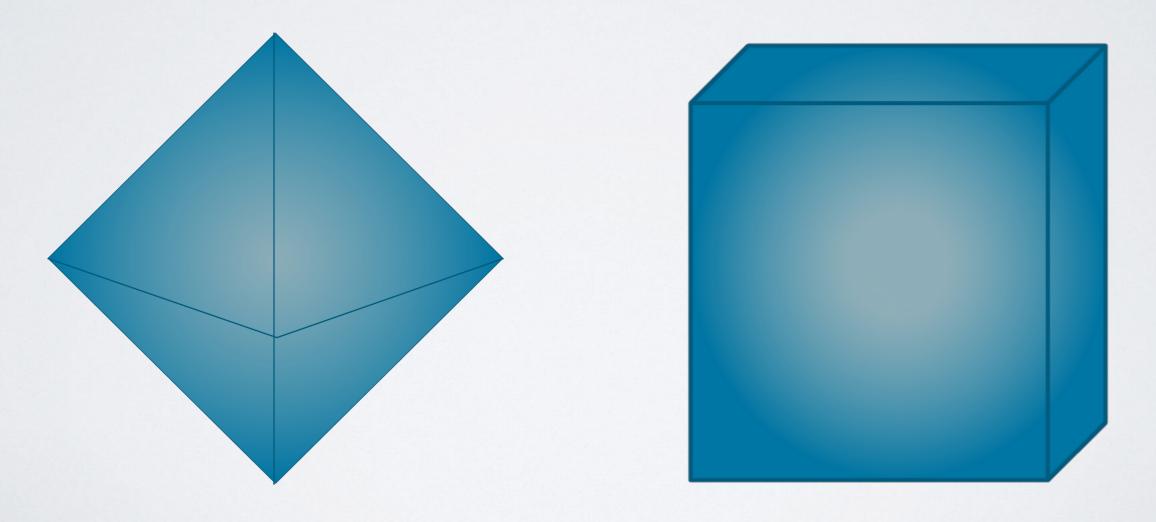
EXCELLENT GENERIC CONSTRAINTS



GOOD GENERIC CONSTRAINTS

GOOD GENERIC CONSTRAINTS

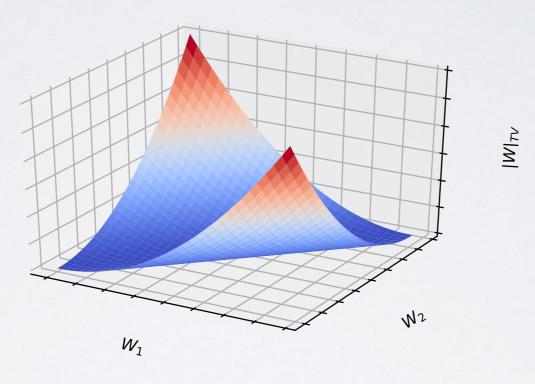
 $||W||_1, ||W||_{\infty}$



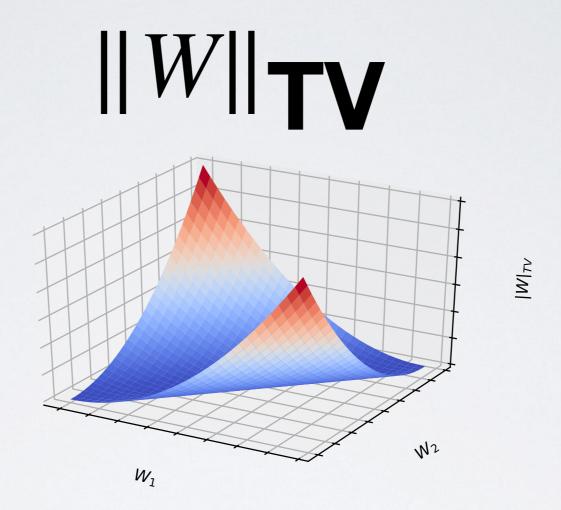
PESKY GENERIC CONSTRAINTS

PESKY GENERIC CONSTRAINTS

$||W||_{TV}$



PESKY GENERIC CONSTRAINTS



Lemma: An ϵ – approximate CG step can be computed in $O(1/\epsilon)$ time (independent of dimensions).

$$||W||_{\pi}^{2} = \sum_{\substack{v_{in}[i] \xrightarrow{e_{1}} v_{1} \xrightarrow{e_{2}} \dots v_{out}[j]}} \left| \prod_{k=1}^{l} W_{e_{k}} \right|^{2}$$

$$||W||_{\pi}^{2} = \sum_{\substack{v_{in}[i] \stackrel{e_{1}}{\to} v_{1} \stackrel{e_{2}}{\to} \dots v_{out}[j]}} \left| \prod_{k=1}^{l} W_{e_{k}} \right|^{2}$$

Why path norm? Rescale invariance

$$||W||_{\pi}^{2} = \sum_{\substack{v_{in}[i] \stackrel{e_{1}}{\to} v_{1} \stackrel{e_{2}}{\to} \dots v_{out}[j]}} \left| \prod_{k=1}^{l} W_{e_{k}} \right|^{2}$$

Why path norm? Rescale invariance

$$||W||_{\pi}^{2} = \sum_{\substack{v_{in}[i] \xrightarrow{e_{1}} v_{1} \xrightarrow{e_{2}} \dots v_{out}[j]}} \left| \prod_{k=1}^{l} W_{e_{k}} \right|^{2}$$

- Why path norm? Rescale invariance
- Projection at least NP Hard

$$||W||_{\pi}^{2} = \sum_{\substack{v_{in}[i] \xrightarrow{e_{1}} v_{1} \xrightarrow{e_{2}} \dots v_{out}[j]}} \left| \prod_{k=1}^{l} W_{e_{k}} \right|^{2}$$

- Why path norm? Rescale invariance
- Projection at least NP Hard

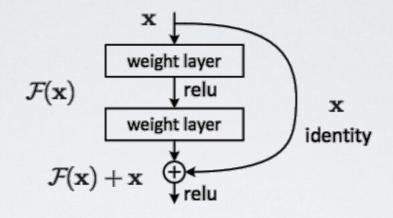
$$||W||_{\pi}^{2} = \sum_{\substack{v_{in}[i] \xrightarrow{e_{1}} v_{1} \xrightarrow{e_{2}} \dots v_{out}[j]}} \left| \prod_{k=1}^{l} W_{e_{k}} \right|^{2}$$

- Why path norm? Rescale invariance
- Projection at least NP Hard
- Subproblems in CG can be solved in O(BI)

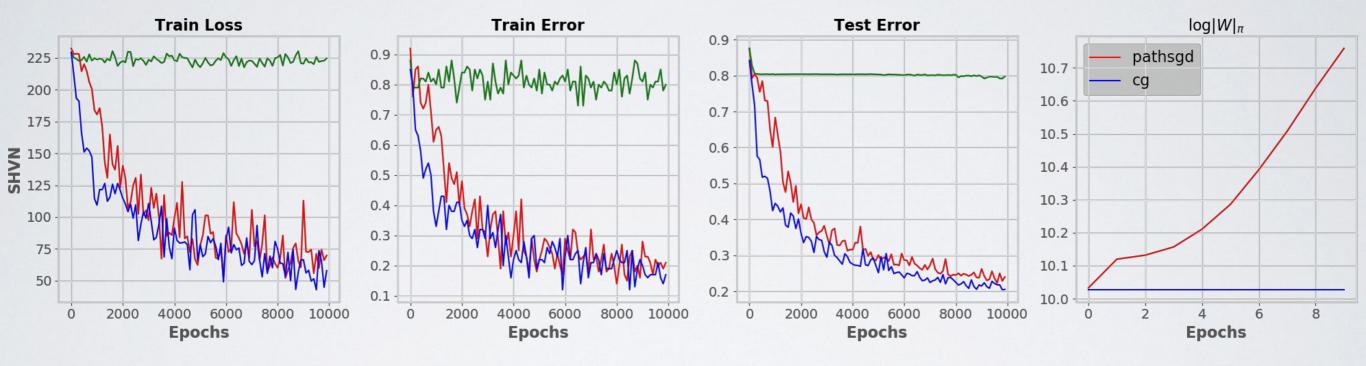
RESNETS

34-layer residual

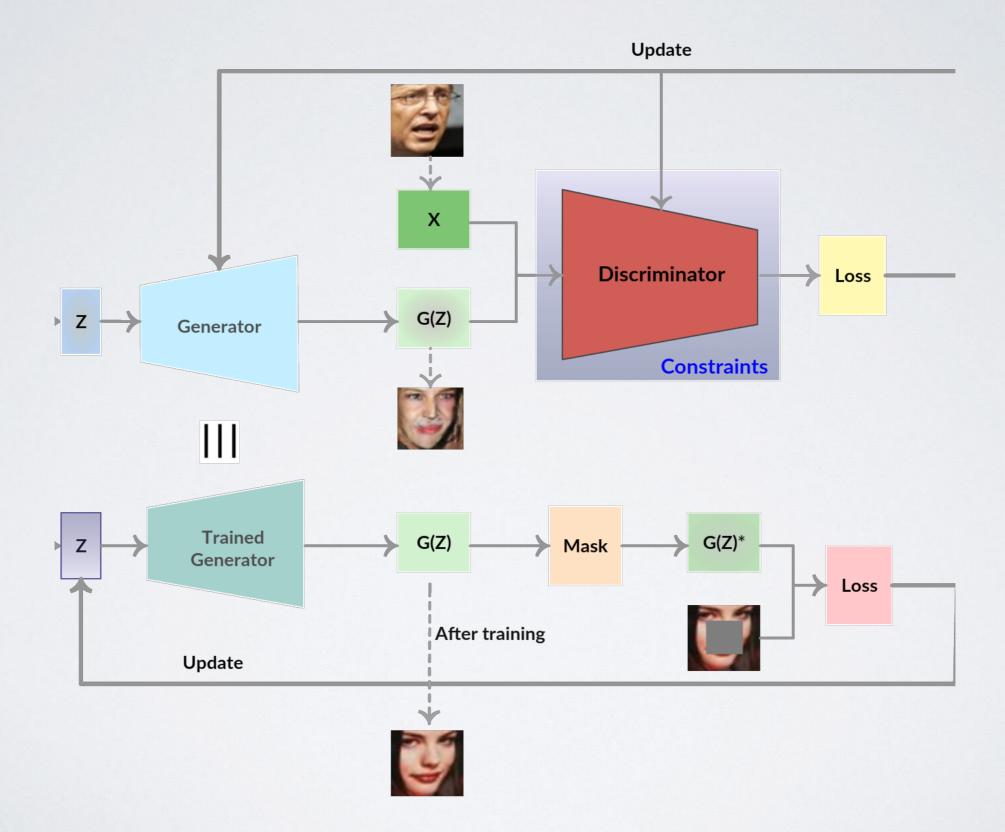
RESNETS



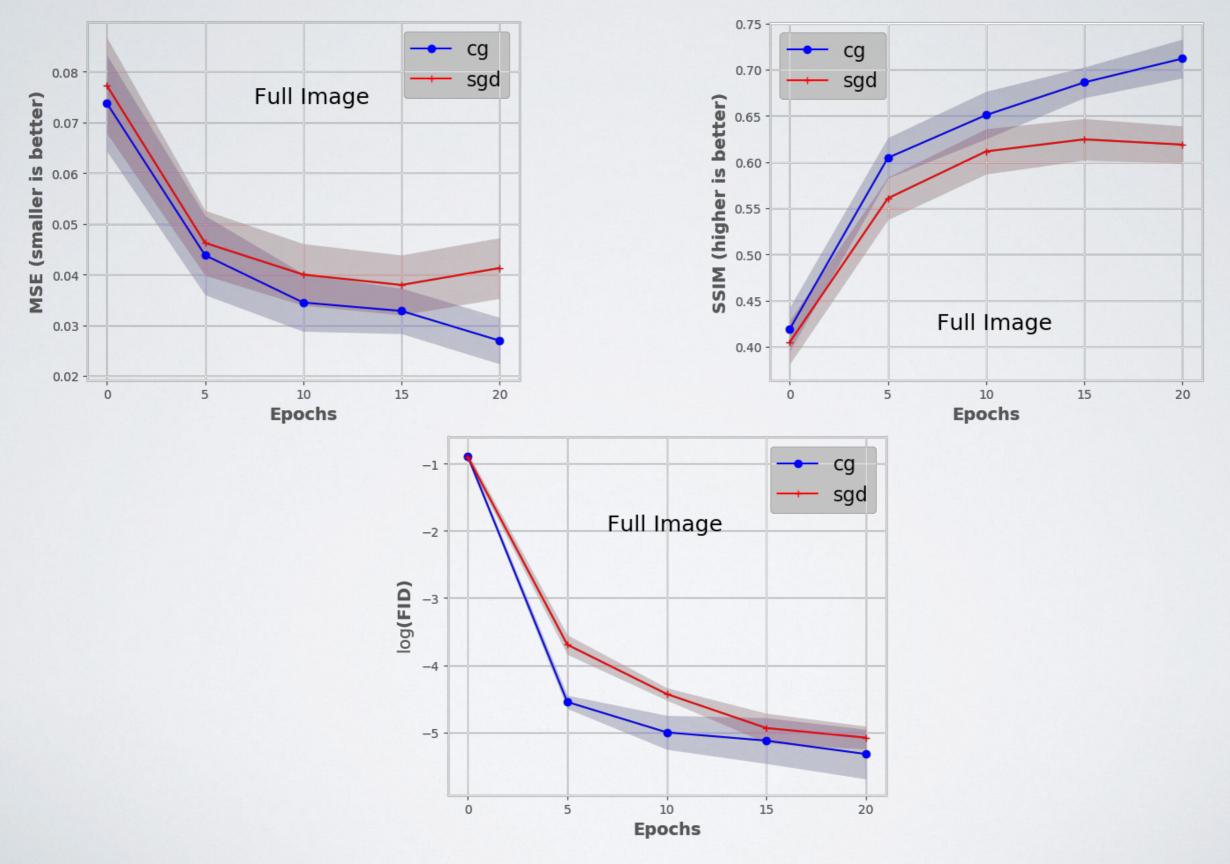
PATH-CG



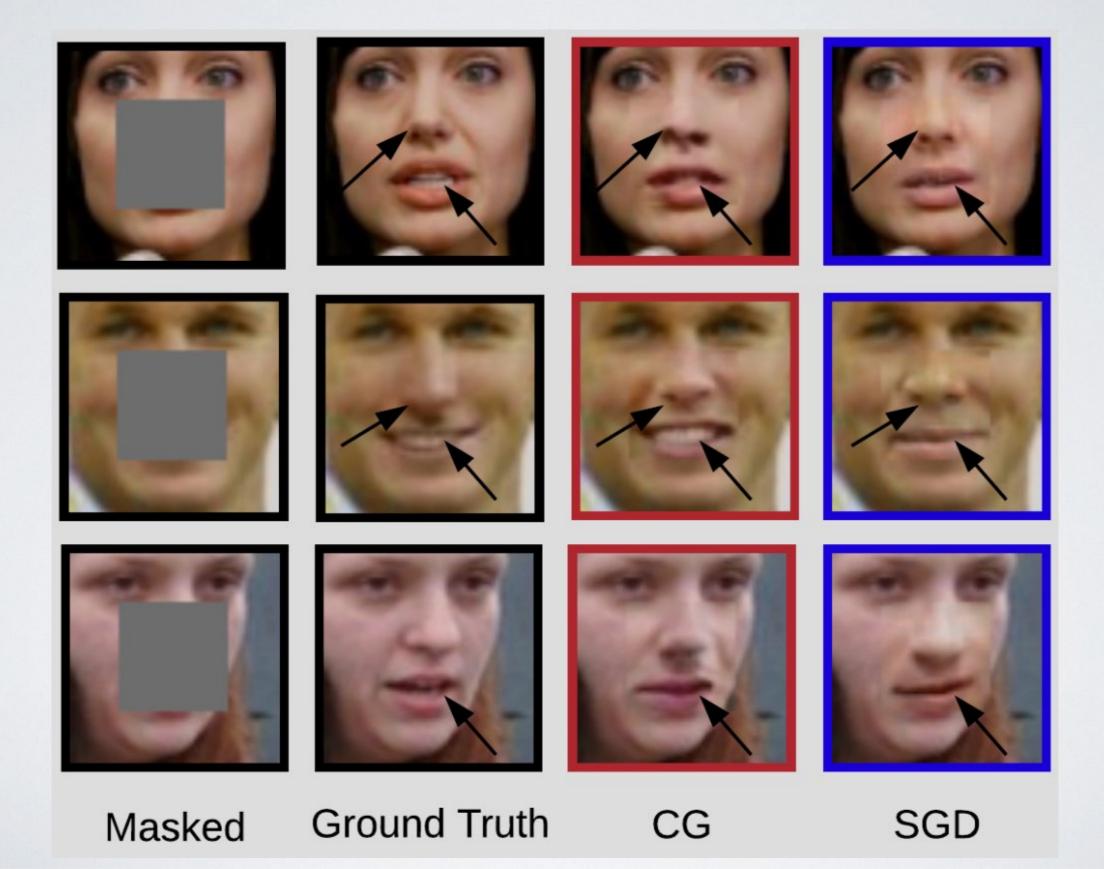
DC-GAN



DC-GAN



DC-GAN



FOR MORE DETAILS ON THEORY AND EXPERIMENTS, CATCH US AT POSTER #1!