' al”,

EXPLICITLY IMPOSING CONSTRAINTS IN DEEP
NETWORKS VIA CONDITIONAL GRADIENTS
GIVES IMPROVED GENERALIZATION AND
FASTER CONVERGENCE

Sathya Ravi, Tuan Dinh, Vishnu Lokhande, Vikas Singh

Department of Computer Sciences
University of Wisconsin—Madison

714720083

IIIIIIIIIIIIIIIIIIIII -MADISON

DEEP LEARNING

DEEP LEARNING

in L(W
Solve mmni(W)

DEEP LEARNING

in L(W
Solve mmni(W)

L(W) = E¢ f(W,§)

c=(XYy)~D

Compute an estimate of gradient

Compute an estimate of oradient

Wit1 = We — 0 VL (W3)

iR
Compute an estimate of gradient

Wit1 = We — 0 VL (W3)

) :vit(Wt)} — VL(W,)

3 28
HVLt(W) : VL(W)H < 52

Compute an estimate of oradient

Wi =Wy —

1.V L (W)

What about

43

4J

waﬁﬂmg

[z - i)

<O‘

QUALITY/PREDICTIVE
PERFORMANCE

QUALITY/PREDICTIVE
PERFORMANCE

R(W) = 43(:zz,y)NDL(W§ @)

QUALITY/PREDICTIVE
PERFORMANCE

R(W) = “3(a:,y)~DL(W§ @)

Rs(W) = > L(Wi (24, 3:)

QUALITY/PREDICTIVE
PERFORMANCE

R(W) = 43(:zz,y)NDL(W§ @)

Rs(W) = = 3" L(W; (25,1))

The one true theorem

R(W)=Rs(W)+R(W)—-Rs(W)

QUALITY/PREDICTIVE

PERFORMANCE
R(W) =E)~ L(W; (z,y))
ZL B)

The one true theorem

R(W)=Rs(W)+R(W)—-Rs(W)
N P H/_/

Train error As(W):=Test error

QUALITY/PREDICTIVE
PERFORMANCE

QUALITY/PREDICTIVE
PERFORMANCE

Classical

Ag(W) x#parameters

QUALITY/PREDICTIVE
PERFORMANCE

Classical Modern (refined)

Ag (W) x#parameters Ag(W) ||W]]

QUALITY/PREDICTIVE

PERFORMANCE
Classical Modern (refined)
Ag(W) oc#parameters Ag(W) o||W]|

Simple idea: Enforce “high” quality

HOW TO HAVE YOUR CAKE
AND EAT IT (TOOY?

HOW TO HAVE YOUR CAKE
AND EAT IT (TOOY?

Ingredients

HOW TO HAVE YOUR CAKE
AND EAT IT (TOOY?

Ingredients

|, High quality: constraints with nice theoretical
properties

HOW TO HAVE YOUR CAKE
AND EAT IT (TOOY?

Ingredients

|, High quality: constraints with nice theoretical
properties

2. A'fast” algorithm: Projection free
approaches are more parsimonious

HOW TO HAVE YOUR CAKE
AND EAT IT (TOOY?

Ingredients

|, High quality: constraints with nice theoretical
properties

2. A'fast” algorithm: Projection free
approaches are more parsimonious

3. Resources: GPUs, fellow graduate students,
adviser etc.

CONTRIBUTIONS

CONTRIBUTIONS

® Enforcing various generic constraints:
R(W)<A

CONTRIBUTIONS

® Enforcing various generic constraints:
R(W)<A

® Enforcing path norm constraint

CONTRIBUTIONS

® Enforcing various generic constraints:
R(W)<A

® Fnforcing

® X

beriments with three ¢

ana datasets

hath norm constraint

fferent tasks

WHY!

L(W)

WHY!

Pareto Front

Non-optimal Points

Pareto Optimal Points

R(W)

EXCELLENT GENERIC CONSTRAINTS

EXCELLENT GENERIC CONSTRAINTS

Wil W]

GOOD GENERIC CONSTRAINTS

GOOD GENERIC CONSTRAINTS

PESKY GENERIC CONSTRAINTS

PESKY GENERIC CONSTRAINTS
I WllTv

PESKY GENERIC CONSTRAINTS
I WllTv

[Wir,

Lemma: An ¢ — approximate CG step can be computed in O (1/¢) time
(independent of dimensions).

PATH CG

W7 =

PATH CG

b

vin[i]gvle_%"'vout[j] k=1

PATH CG
= D> e

vin[i]e_l)‘}le_%"'vout[j] k=1

e Why path norm” Rescale invariance

PATH CG
= D> e

vin[i]e_l)‘}le_%"'vout[j] k=1

e Why path norm” Rescale invariance

PATH CG
= D> e

vin[i]e_l)‘}le_%"'vout[j] k=1

e Why path norm” Rescale invariance

e Projection at least NP Hard

PATH CG
= D> e

vin[i]e_l)‘}le_%"'vout[j] k=1

e Why path norm” Rescale invariance

e Projection at least NP Hard

PATH CG
-) e

vin[i]e_l)‘}le_%"'vout[j] k=1

e \Why path norm? Rescale invariance
e Projection at least NP Hard

e Subproblems in CG can be solved in O(BI)

RESNETS

34-layer residual

mage

3x3 conw, 128
33 conw, 128
3x3 conw, 128

33 cow, 128 |

I3cow, 128 |

3x3 conv, 512

3x3 conv, 512

3x3 corw, 512

avg pool

60 -

50 -

40 -

30 -

20 -

10 -

10

Train Loss

logi10A = 1
log10A = 2
logi0A = 3
logi0A = 4

- logipA =5

log10A = 6

20

B0V 40.. 50
x103 iterations

60

70 80

1.0

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

RESNETS

weight layer
F(x) l relu
weight layer

F(x) +x

0 10

Train Error

20

30 40 50
x103 iterations

identity

60

X

e M N

70

80

0.8 -

0.6 -

0.4 -

0.2 -

10

20

Validation Error

307 5140 50
x103 iterations

60

70

80

225

200 -

173

0

2000

Train Loss

4000 6000 8000 10000
Epochs

0.9 -

0.8 -

0.7 -

0.6 -

QISE

0.4 -

0.3 -

0.2 -

0.1 4

0

PATH-CG

Train Error

:

2000 4000 6000
Epochs

Wl
- “M iy iy

8000 10000

Test Error
0.9 -

08 a| N—

0.7 -

0.6 -

0.5

o

ek

0.2 -

0 2000 4000 6000 8000 10000
Epochs

log|W|x

—— pathsgd

10.7 -

10.6 -

1055

10.4 -

10.3 -

10.2 -

10.1 -

10.0 = : i | .
0 2 4 6 8

>Z—)

Z—>

Y

Generator

Trained
Generator

Update

—) G[Z) ——) Mask — >

After training

—> Loss

C'S

]
v

MSE (smaller is better)

0.08 -

0.07 -

0.06 -

0.05 -

0.04 -

0.03 -

0.02 -

Full Image

Epochs

—— cg —— g

— 0]

15

log(FID)

DC-GAN

0.75-

0.70 - | Sgd

o

o

v}
1

o

o

o
1

SSIM (higher is better)

0.45 -
Full Image
0.40 -
2'0 (') 5' 1I0 1|5 2|0
Epochs
-1- —e— (g

e sgd
21 Full Image

0 5 10 15 20
Epochs

Masked Ground Truth CG

ROR MORE DETAILS Cf
THEORY AND EXPERIMENTS,
CATCH US AT

POSTER #1!

