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SCHEDULE

* Session : 8:30 am to 9:30 am

Focus: How to train machine learning models!
* Session Il 9:45 am to 10:45 am

Focus: Why do these techniques “work™?
e Session lll: 'l am to | 1145 am

Focus: Practical examples

Material is made from papers/discussions/lecture notes/talks of Vikas Singh, Karl Rohe, Steve Wright, Rob Nowak, Ben Recht, Moritz Hardt,
Dimitri Bertsekas, Kamalika Chaudhuri. Mistakes/incorrect statements are entirely due to me!



GRADIENT DESCENT (GD)

In L(W
Solve  mmnL(}¥)
DO VVz+1 < VVz _ nVWL(W)

until convergence



PRELIMINARIES

Taylor’s theorem
1
LW +d)=L(W) + / VLW +~d)"'d dy
O

LW +d) = L(W)+ VLW +~d)'d, for some v & (0,1)



PRELIMINARIES — |

Smoothness ||VL(U) - VL(V)|| < B||U - V]|

L(V)—L{U) — VL(U)T(V —U) = /1[VL(U +v(V =U)) — VL(U)]T(V — U)dy
SAHVMU+%V—UD—VMWWV—UWV

1
s/ BIlV — U2y
0

B 2
= v -]

We didn’t need convexity at all!!



ANALYZE GD |

L(W +nd) < L(W) + 9V L(W)Td + 772§Hd|\2

Recall the update rule: W, W —nV L(W)

(+1

L(Wiy1) < L(Wy) VL(Wy) |3

1
25‘




ANALYZE GD |

28{L(Wo) — L]

[vrom)) < |/ 2L

Often L = 0



| OCALLY GOOD

Let 0 be a fixed point for a local smooth map ¢ : U — R" where U is a neighborhood of 0
Suppose R" = F, & E,, where E is the span of the eigenvectors < 1 of Jacobian at 0 and

F,, the span of remaining. Then J a disk tangent to F, at 0 := local stable center manifold,
and 3 neighborhood B of 0 such that ¢(disk) N B C disk and N2,¢~ "(B) C disk.

Apply this to Gradient Descent to show that:

P(lliﬂ Ly — xsaddle) =0



VARIANTS OF GD

Different ways to choose N
Exact line search
Approximate line search

Back tracking

One inequality to rule them all!
L(Wyit1) < L(Wy) — C||VL(Wy)||?



ACCELERATED GD



KEEPING UP WITH THE
MOMENTUM

Wt_|_1 — Wt s UVL(Wt) == Oé(Wt B Wt—l)

Convergence is hard!



HOW FAST IS [T ANYWAY?

Method Speed

NOT THE

. END QF |
STORY!

ACCELERATED GD O(l/eps’)




NEVER BE HASTY
WHEN IT COMES
TO SAFETY

Assume convexity and let’s say we get a o-approximate gradient at each time ¢.
Then Accelerated GD has: L(W,;) — L* < O(L/t*) + O(t6)
Then GD has: L(W;) — L* < O(L/t) 4+ O(6)

Gradient Descent vs Accelerated Gradient Descent ?r,adlen: Descent vs Accelerated Gradie t Descent with neoisy gradients
=g * s *

GD

AccGD 10 A cGD
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YOU KEEP SAYING GRADIENT,
BUT ...

L(W) = E¢ f(W,€)

& =(XYy)~D

How do | compute the gradient?



ENTER SGD

Compute an estimate of gradient

Wir1 = Wy — 0 VL (W)

) :vit(Wt)} — VL(W,)

e - )
) HVLt(W)—VL(W)H < o2




ANALYZE SGD — |

~ 2 ~ —
L(Wisy) < L(W,) — 0.V Ly(W) TV L(W,) + %VLt(Wt)TWL(Wt)VLt(Wt)

\ 4

B{L(Wesn)|Wi] < LOW:) — IV L(W) L)W + RV L (9,) 21w

)||2 | 771520-25
e

< = = E[L(We)|Wi] < L(W,) — Z|IVL(W,




ANALYZE SGD

CL(Wr)] < L(Wy) —

What do we do
now?

randomly...




ANALYZE SGD — LAST PHEW!

= .
1 . e

Zr = W, with probability — D) where Hy = ) t
. n

‘L

T —

—_

1
t+1)

E[[[VL(W)[|]

VR

t=0

lim E[|VL(Zr)|

T'— o0




WHATI DID WE MISS?

® Second Order Methods

® Stochastic Variance Reduced Methoc

* 5G — Langevin Dynamics

® Quantized Methods

® Constrained Optimization




QUESTIONS!?
SEEYOU IN |5 MINUTES!
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RECAP

* What do we know so far?
Computationally great
* Says nothing about learning!

After all, that's what we care about, isn't It!



GENERALIZATION ERROR

R(W) = “3(x,y)~DL(W§ (z,y))

ZL (i, 4i))

The one true theorem

R(W)=Rs(W)+R(W)—-Rs(W)
N—— H/_/

Train error As(W):=Test error



LEARNING [HEORY — [0

Occam’s Razor: Simpler explanations should always be preferred

What do we mean by “simple”?

ASNDQTL

1
— sup

2n wew |-

> oL (W, (2i,:))

oi= +1, -1 with equal probability




WHY DO WE CARE!
AS(W) 5 Q%n,D

Proof (handwavy)

® SplitSinto Sy and 5

e For large enough m, Ls,(W) & Lp(WV) and thus Lp(W) -
Ls, (W) 2 Ls,(W)-Ls (W)

® 5 is like the training set and S Is the test set



Since S| and 52 were randomly picked

1
Espzm [Eyus, [L(W, 2)] — E,os, [L(W, 2)]] < Egopzm | — Z o; L(W, z;)

2m
< E L Z (W,
>~ V[?'lé]g\} S~D2m _2m o; L Zz
N g r
AS %% § sup 4:SND2m A O'iL W,Zi
(W) < sup e
_ . -
S ‘ﬂsNDQm SUup P O',L'L W, <3 — Q%nﬂ) )4
| |V W)




EXAMPLES & SYNOPSIS

For linear classifiers
max; HLEZHQ
— : < —
W= (W Wle <1} — v =0 (22l
max; ||2;||c0v/10g d
N

W= {W: W[ <1 — m(vv)=0<

Summary

Low R(W) is good!



BACK TO 5GD

® Radamacher Complexity Is algorithm and data agnostic and
depends only on the richness/complexity of the hypothesis

class/space #'. It is often referred to as "uniform

convergence’ since it works for any W in #'.

® Doesn't give us too much inturtion about why the methods
we use work well In practice

® 50 we need a different approach...



SGD — AN UBER ALGORITHM

Any model trained by SGD within a
reasonable number of steps has
vanishing seneralization error




STABILITY - GENERALIZATION

Small perturbations in the data
don’t change training loss much

A randomized algorithm A is € — uniformly stable if for all datasets S, S” € D" such that S, S’

differ in at most one example, we have,

sngA [L(A(S),2z) — L(A(S"),2)] <€



STABILITY -» GENERALIZATION |

Redefining generalization error
€gen = Es,4 [Rs|A(S)] — RIA(S)]]

Theorem

Let A be e-uniformly stable. Then €,en, < €



LET'S PROVE [T

® 5 5 be two samples. S be S except for the I-th data point
where It Is replaced from S

isEa[Rs[A(S)]]

_1 3, i
4, ol], — L(A i
SEa | D L(A(S). 2

_1 i | _
— FJELE —E:LASZ /
S GRITLAL ni:1 ( ( )727,)

|
&L
@)
&L
@)
S,
AN

% z”: L(A(S),z)| +6

0B A[R[A(S)]] + 0
LsEA[RIA(S)]] + €
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CQJL
:‘;4
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WHAIT ABOUT 5GD!

1 1
SGD < L s+

Cstab =

n

T = O(n) is good



PROOF IDEA

Analyze the behavior of SGD for two datasets that differ by
one example

Use a Stopping time analysis

SGD has a longer “burn-in period”: where Ot doesn't grow
too much

When 0Ot does grow, Nt has decayed



Can easlly handle other stabilit
Decay, Cl

Weight

inducing operations

Ng elc..

Amenable to convex constraints too!



EXTENSIONS

® High probability bounds
® Uniform Hypothesis Stability

® Data dependent bounds using information
theory




THINGS WE MISSED

® Uniform convergence of Deep Networks

e PAC-Bayes Based Approaches

e Differential Privacy
® Adversarial Training

® (Generative Adversarial Networks



QUESTIONS!?
SEEYOU IN |5 MINUTES!



WACV' |8

OPTIMIZATION METHODS FOR DEEP
LEARNING — THEORY AND PRACTICE Il

Sathya Ravi, Yunyang Xiong
Department of Computer Sciences
University of Wisconsin—Madison

| 3/03/2018




LET'S BE PRACTICAL

In theory, there Is no difference
between theory and practice. But,
In practice, there is



GETTING DOWN TO BRASS
TACKS

e Choose framework
e Choose algorithm
e Run

We will see THREE examples!



DEEP RESIDUAL NETWORKS
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RESNET LAYERS




DEMO



RININ

output t-1 output t output t+1

%
=
%

A A

v
v

output_t =
activation(
— Weinput t + —
State t U-state_t + State t+1
bo)

input t-1 input t input t+1



output t-1 output t output t+1
t-1 } ] t } J t+1 ! C track
ct- c c a ac
> 1K »| Compute - N »| Compute > M y =
new new
A A
ct| output t= ct
Bl - activation( >
Worinput t +
Uoestate_t +
State t osstate_ State t+1
Voec t+
bo)
A A
input t-1 input t input t+1



DEMO



GENERATIVE ADVERSARIAL
NETWORKS (GAN)

Training set

Random

Generator

Discriminator

O\
/ Real

| / T : A[Fake
el \l_
— ‘/F?ﬂke image




min max

G D

GAN MATH




DEMO



QUESTIONS!



